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In recent years a new class of nonlinear oscillator differential equation has been investigated.
While they take the form

.x þ gðxÞ ¼ ef ðx; ’xÞ; 0oe{1; ð1aÞ

gð�xÞ ¼ �gðxÞ; ð1bÞ

the elastic force term gðxÞ may be non-polynomial and/or contain no linear hook-law linear term
[1–3], and e is a small positive parameter. Such expressions may also occur in the energy
generation/dissipative function f ðx; ’xÞ: For this class of second order differential equation the
standard perturbation procedures cannot be applied since the e ¼ 0 limit does not give a harmonic
oscillator equation and it is on this assumption that all the standard methods are based. The
following are particular examples of equation belonging to the class defined by Eq. (1):

.x þ x3 ¼ eð1� x2Þð ’xÞ1=3; ð2aÞ

.x þ x1=3 þ ex3 ¼ 0; ð2bÞ

.x þ x1=3 ¼ eð1� x2Þ ’x: ð2cÞ

It should be indicated that the method of harmonic balance can be used to construct analytical
approximations to the periodic solutions of the systems given in Eqs. (1) and (2). However, this
procedure does not allow the determination of the transient behavior of the solutions for the case
where limit cycles exist [3].
The main purpose of this note is to propose a perturbation method that can be used to

construct first order (in e) solutions to Eq. (1) for the case where limit cycles exist. This method
combines the important features of two standard perturbation procedures: equivalent
linearization [4] and first order averaging [3,4]. A strength of the method is that it permits a
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direct calculation of the transient behaviors for the solutions as they approach the limit points or
limit cycles. Since for many problems only the general qualitative features of the oscillatory
behavior are needed, the proposed method can provide this information along with (first order in
e) estimates for the angular frequency and the limit-cycles amplitudes.
To proceed, consider Eq. (1) with the initial conditions

xð0Þ ¼ A ¼ given; ’xð0Þ ¼ 0: ð3Þ

A linearization of the function gðxÞ can be done by expanding f ðA cos yÞ; where y ¼ oðAÞt [4].
Doing this gives

gðxÞ ¼ gðA cos yÞ ¼ g0ðAÞA cos yþ ðhigher order harmonicsÞ: ð4Þ

The linearization process consists in dropping all the higher order harmonic terms and replacing
A cos y in the first term on the right by x, i.e.,

gðxÞ-g0ðAÞA cos y-g0ðAÞx: ð5Þ

Note that given gðxÞ; the coefficient g0ðAÞ can be directly calculated. If the angular frequency is
defined as

½oðAÞ�2 ¼ g0ðAÞ ð6Þ

and Eqs. (5) and (6) are substituted into Eq. (1), the following expression results :

.x þ ½oðAÞ�2x ¼ ef x; ’xð Þ; 0oe{1; ð7Þ

This last equation is now of the form for which the first order averaging methods [3,4,5] can be
applied, subject to the initial conditions of Eq. (3).
The first order averaging method consists of assuming that Eq. (7) has a solution of the form

[3–5]

xðt; eÞ ¼ aðt; eÞcos½ot þ fðt; eÞ�; ð8aÞ

’xðt; eÞ ¼ �aðt; eÞo sin½ot þ fðt; eÞ�; ð8bÞ

where the solutions to the following equations provide a first order estimate for the amplitude
aðt; eÞ and phase fðt; eÞ functions:

da

dt
¼ �

e
2po

� �Z 2p

0

f ða cosc;�ao sin cÞsin c dc; ð9aÞ

df
dt

¼ �
e

2pao

� �Z 2p

0

f ða cosc;�ao sin cÞcosc dc ð9bÞ

with the requirement that að0; eÞ ¼ A:Note that since this is a first order in e calculation, in general
the initial conditions, given by Eq. (3), are only satisfied to order e: For the above procedure, it
follows that

xð0Þ ¼ A; ’xð0Þ ¼ OðeÞ: ð10Þ

The initial details of this method will be illustrated by applying it to two examples.
First, consider a Duffings oscillator with linear damping,

.x þ x3 ¼ �e ’x ð11Þ
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corresponding to gðxÞ ¼ x3 and f x; ’xð Þ ¼ � ’x: Now

g A cos yð Þ ¼ A3 cos yð Þ3¼
3A2

4

� �
A cos yþHOH ð12Þ

and the linearization of gðxÞ is

g xð Þ-
3A2

4

� �
x and o Að Þ½ �2¼

3A2

4
: ð13Þ

Therefore, Eq. (11) is transformed to

.x þ o Að Þ½ �2x ¼ �e ’x ð14Þ

and Eq. (9) are

da

dt
¼ �

e
2

� �
a;

df
dt

¼ 0 ð15Þ

with solutions

a t; eð Þ ¼ A exp �
et
2

� �
; f t; eð Þ ¼ f0 ¼ constant: ð16Þ

Consequently, an approximation to the solution of Eq. (11) is

x t; eð Þ ¼ Ae�ðet=2Þcos
ffiffiffiffi
3
4

q
t

� 	
; ð17Þ

where f0 has been selected to be zero.
It should be observed that the following non-linear oscillatory problem [6] with linear damping

can be also solved using this technique:

.x þ x1=3 ¼ �e ’x: ð18Þ

Using the result [7]

ðcos yÞ1=3 ¼ a1 cos yþ a2 cosð3yÞ þ a3 cosð5yÞ þ?; ð19Þ

where a1 ¼ 1:15960; the linearization of Eq. (18) gives

.x þ ½oðAÞ�2x ¼ �e ’x with ½oðAÞ�2 ¼
a1

A2=3
ð20Þ

and the approximate solution is

xðt; eÞ ¼ Ae�ðet=2Þ cos½oðAÞt�: ð21Þ

Consider now the equations [1,6]

.x þ x3=5 ¼ eð1� x2Þ ’x ð22Þ

and

.x þ x1=3 ¼ eð1� x2Þ ’x ð23Þ
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or the more general equation which may have limit cycles

.x þ gðxÞ ¼ eF ðx2; ’x2Þ ’x; ð24Þ

gðxÞ ¼ xð2mþ1Þ=ð2nþ1Þ; m; nð Þ integers: ð25Þ

The proposed combined equivalent linearization and averaging perturbation method is carried
out in the following steps:
(1) Replace gðxÞ by its equivalent linear form

xa-½Aða21Þb1�x; a ¼
2m þ 1
2n þ 1

;

¼ ½oðAÞ�2x; ð26Þ

where

xa-ðA cos yÞa ¼ Aa½b1 cos yþ b2 cos 3yþ?� ð27Þ

was used. (Note that the coefficients (b1; b2;y) can be explicitly calculated [7].) The
corresponding differential equation is

.x þ ½oðAÞ�2x ¼ eF ðx2; ’x2Þ ’x: ð28Þ

(2) Now use the method of first order averaging to determine the values of possible limit-cycle
amplitudes. This can be done by using Eq. (9a) with the function f replaced by the function F

from Eq. (24), i.e.,

GðaÞ ¼
Z 2p

0

Fða2 cos2 c;o2a2 sin2 cÞð�oa sin cÞsin c dc ¼ 0: ð29Þ

The real and positive zeros of GðaÞ ¼ 0 correspond to the limit-cycle amplitudes. However, for
many systems modelling natural phenomena, only a single such root exists, i.e., the limit cycle is
unique. Calling this value a ¼ %a; the calculation proceeds by replacing oðAÞ by oð %aÞ; i.e., Eq. (28)
becomes

.x þ ½oð %aÞ�2x ¼ eF ðx2; ’x2Þ ’x: ð30Þ

(3) The method of first order averaging is now applied to Eq. (30) with the initial conditions

að0; eÞ ¼ a0; fð0; eÞ ¼ f0; ð31Þ

where a0 and f0 are ‘‘arbitrary’’ constants.
The following example gives a good illustration of this general procedure [1]:

.x þ x3 ¼ eð1� x2Þ ’x: ð32Þ

The linearization of the gðxÞ ¼ x3 term gives

.x þ ½oðAÞ�2x ¼ eð1� x2Þ ’x; ½oðAÞ�2 ¼
3A2

4
: ð33Þ

Further, the evaluation of the amplitude differential Eq. (9a) leads to the result

GðaÞ ¼ a 1�
a2

4

� 	
¼ 0: ð34Þ
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Inspection of this equation shows that %a ¼ 2: Consequently, first order averaging is now to be
applied to

.x þ 3x ¼ eð1� x2Þ ’x; ð35Þ

where ½oð2Þ�2 ¼ 3 has been used in Eq. (33). Doing the appropriate calculations gives the results

da

dt
¼

ea
2

� �
1�

a2

4

� 	
;
df
dt

¼ 0 ð36Þ

with solutions

aðt; eÞ ¼
2a0

½a20 þ ð4� a20Þe
�et�1=2

; fðt; eÞ ¼ f0: ð37Þ

Note that

aðt; eÞ
t large


! 2 ð38Þ

and the approximate solution to Eq. (32) is

xðt; eÞ ¼ aðt; eÞcosð
ffiffiffiffi
3t

p
þ f0Þ ð39Þ

with

aðt; eÞ
t large


! 2cos

ffiffiffiffi
3t

p
þ f0

� �
: ð40Þ

This latter result is in agreement with the previous results of Mickens [1], i.e., Eq. (32) has a limit-
cycle solution such that, for 0oe{1; the limiting amplitude has a value close to a ¼ 2; and the
angular frequency is o ¼

ffiffiffi
3

p
: A similar calculation can be done for Eq. (23).

In summary, we have constructed a new perturbation procedure which allows the easy and
direct estimation of the limit-cycle parameters for oscillatory systems for which the usual
perturbation methods cannot be applied. The power of the procedure was demonstrated by using
it to obtain approximate analytical solutions to three non-linear equations for which the elastic
force is not only non-linear but also contains no linear terms. A major advantage of the procedure
is that it allows the calculation of the transient behavior to the limit cycle.
Finally, it should be indicated that one possible way to improve on the results presented here is

to obtain the exact angular frequency for the left-side terms in Eq. (1), i.e.,

.y þ gðyÞ ¼ 0: ð41Þ

Since this corresponds to a conservative oscillator, a first integral can be easily gotten; it is given
by

1

2

dy

dt

� �2
þHðyÞ ¼ E; ð42aÞ

where

HðyÞ ¼
Z y

gðzÞ dz: ð42bÞ
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For initial conditions, yð0Þ ¼ A and ’yð0Þ ¼ 0; the period is given by

TðAÞ ¼
2p

oðAÞ
¼ 4

Z 0

A

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½HðAÞ � HðyÞ�

p : ð43Þ

This exact value for oðAÞ can then be used in Eq. (26).
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